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ABSTRACT

In 1983, a long-term research project was initiated with the immediate goal being
improved understanding of large amplitude stress waves in wet and dry porous materials
and the ultimate goal being improved predictive capabilities for containment applications.
A comprehensive theory of wave propagation in partially liquid-saturated porous materials
has been developed. Some of the consequences of this theory have been explored; for
example, the theory predicts compressional and shear wave speeds for partially saturated
laboratory samples in agreement with experiment at lower (seismological) frequencies. The
theory also shows that, by using only one (common) assumption (i.e., capillary pressure
effects are neglected), code calculations of partial saturation problems may be reduced to
computations no more complicated than those of full saturation problems.
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INTRODUCTION

We wish to take this opportunity to present an overview of our progress to date on
understanding the physics of wave propagation in wet porous materials. The discussion
will be limited mainly to summarizing work of the authors since this project began in 1983.
However, in addition, we will provide some insight into the prospects for this research to
make a significant impact on containment calculations in the future.

One discussion which provides motivation for this work was presented by B. W. Smith!
at the Monterey Containment Symposium. Computer modelling of Nevada Test Site (NTS)
alluvium is severely hindered by the lack of adequate laboratory and field experimental

data on the constitutive behavior of the materials of interest. The observed behavior of
the available laboratory samples can, of course, be modelled - using some favored phe-

nomenological model (or a table look up procedure) - for the limited number of loading
and unloading cycles which are typically studied for such samples. However, little can be
done with certainty when the computed loading/unloading paths differ significantly from
the typical ones or when samples are not available from the test site.? The computer mod-
elling effort is therefore severely limited by the modeller’s inability to obtain “complete”
data sets to describe the in situ behavior of the materials at the site. Furthermore, as
long as budgets are limited and timetables short, this lack of “adequate” data may be
expected to continue. In order to break this deadlock, a new approach based on a detailed
(microscopic) theory of the deformation behavior of granular/porous materials is clearly
required. Such a theory should be expected to relate the microscopic mechanics of pore
deformation and closure to the parameters in a computer model. Furthermore, if the the-
ory is really successful (i.e., it has some real predictive power), it should allow the modeller

to have greater confidence in the results of the calculations even though no more data is
available than before.

The task of obtaining a general understanding of the deformation behavior of porous
earth with saturating or only partially saturating pore fluids is daunting (to say the least).
To make a start on the problem, we break it into smaller subtasks that can be attacked
separately. Although some of the subtasks must be done in series - depending as they do on
the results of other subtasks, many may also be done in parallel. The two main categories
of study are: (1) reversible and (2) irreversible deformations. For each of these categories,
we need (1) to derive the general forms of the equations of motion and (2) to determine
the values of the coefficients (often but not always constant) appearing in these equations.
Furthermore, we need to seek confirming experimental evidence both for the form of the
equations and the values of the coefficients. Although it is clear that the deformations of
most interest in containment calculations are the irreversible ones leading to permanent
compaction and closure of pores, it is nevertheless essential to understand the reversible
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deformations first: not only because (1) the reversible phenomena are relatively easy to
understand since energy methods may be applied, but also because (2) the pre-yield loading
and post-yield unloading paths for the irreversible deformations are themselves strongly
dependent on the reversible behavior of the granular/porous medium. The reversible
deformations have therefore been given the most attention in the early phases of this effort

and most of the results described in the remainder of this paper refer to deformations for
which energy methods apply.

ENERGY METHODS AND EQUATIONS OF MOTION

When the mechanical and thermodynamical processes set in motion by a deformation
are reversible, an energy functional which includes all the important effects involved in the
motion may be constructed. Equations of motion may then be found by an application of
Hamilton’s principle. Such variational methods based on energy functionals are well-known
in continuum mechanics. Thus, the only really new feature in the present context is the
degree of complexity; porous earth may be composed of many types of solid constituents
and the pore space may be filled with a mixture of water and air. Some irreversible effects
may also be included in the variational method (e.g., losses of energy due to drag between
constituents) when they may be analyzed in terms of a dissipation functional. Other
irreversible effects such as those associated with collapse of pore space lie beyond the scope
of the traditional variational approaches; the forms normally used for the energy functionals
are quadratic with constant coeffictents in the linear problems or simply positive definite
polynomials with constant coefficients for nonlinear problems. During pore collapse, the

values of the “constant coefficients” in the energy functionals are changing so the usefulness
of the variational method is decreased.

We will not get into specifics here, but the authors have constructed a quite general
Lagrangian variational principle® for nonlinear and semilinear deformations (largely re-
versible) of dry and fluid saturated porous solids. This approach is very closely related
to an Eulerian variational formulation by Drumheller and Bedford* for flow of complex
mixtures of fluids and solids. We have shown that our theory reduces correctly to Biot’s
equations of poroelasticity® for small amplitude wave propagation and that it also reduces
correctly to Biot’s theory® of nonlinear and semilinear rheology for porous solids when the
deformations are sufficiently slow. The resulting theory is a nontrivial generalization of
Biot’s ideas including explicit equations of motion for changes of solid and fluid density.
Furthermore, if we assume that capillary pressure effects may be neglected, then the the-
ory also shows that calculations on problems with only partially saturated pores may be
reduced to computations of the same level of difficulty as those for fully saturated pores.”

We expect the general theory to give a very good account of the behavior of wet porous
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materials during elastic (reversible) deformations. Calculations using the theory are in
progress and will be reported elsewhere.

CONSTANTS FOR PARTIAL SATURATION AND HETEROGENEITY
Although the energy methods just described provide a very satisfactory technique for

deriving the form of the equations of motion, some other approach is required to obtain
the various coefficients which appear in the equations. Of course, if appropriate laboratory
data were available, then no further theory would be required. However, when the needed
data are lacking, a deeper analysis of the physical constants in these problems is required.
Again the main difficulty with obtaining theoretical estimates for real earth materials is
the complex structure of these materials. A theory of composites is called for. The theory
which we have applied to this problem is a self-consistent effective medium theory which
has been shown to give good predictions for electrical conductivities and elastic constants
for two-phase composites. In the present class of problems, the two phases are typically a
solid constituent and the void space. However, these theories are not restricted to two phase
composites and therefore can be used quite effectively in studies of rocks. These methods
have been used to find estimates of the coefficients for wave propagation in porous media
with multiple pore fluids (i.e., partially saturated porous media) and with multiple solid
constituents (i.e., heterogeneous porous media). In both of these problems, the resulting

coefficients serve to generalize Biot’s theory of poroelasticity beyond its originally rather
restrictive sphere of applicability.

First, consider a porous medium (e.g., a rock) composed of a variety of solid con-
stituents. An appropriate generalization of Gassmann’s equation must be found for mate-
rials heterogeneous on the microscopic scale. The form of this generalization has already
been studied by Brown and Korringa.? Their main result may be expressed as

H—%;A=K+O‘C, (1)
o 1 1
Cza/[ziﬂﬁ(l{—f" f¢)]l )
M =Clo, (3)
where
c=1-K/K,. (4)

The constants H, C,and M are coefficients in Biot’s strain-energy functional for an isotropic,
linear porous medium saturated with fluid. This quadratic functional of the solid elastic
strain invariants e, I, and of the increment of fluid content ¢ has the form

oW = He? — 2Cec + M¢? — 4ul,. (5)
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The constants appearing in Egs.(1)-(4) are the porosity ¢ and shear modulus u of the porous

frame, the bulk modulus of the pore fluid K,, and three other bulk moduli characteristic
of the porous frame:

oV
%bé(m)p,’ (6)
b-b ). "
and
aV.

where V is the total volume, V, = ¢V is the pore volume, p is the external pressure, p;
is the pore pressure, and p; = p — p; is the differential pressure. Brown and Korringa®
point out that, although these three bulk moduli have simple physical interpretations, this
“does not necessarily help in knowing their values.” Actually the constant K is just the
dry frame bulk modulus and has been studied extensively. However, the values of the
remaining constants K, and K, are not known unless the porous frame is homogeneous on

the microscopic scale in which case K, = K, = K,,, the bulk modulus of the constituent
material.

A method of finding estimates of the constants ¢* and o* in Eqs.(1)-(4) directly based

on an effective medium approximation has been presented recently.® The expressions for
C* and o* are found to be

C‘="‘/[<M1(5)>+<EK((—?—);(;;_)*">] (©)
and
ot = <K(5(:)%“*>/<K(f)i e ) (10)

The averages (-) in (9) and (10) are spatial () averages. The constant ux* is an estimate
of the effective shear modulus of the dry porous frame. Notice that (10) does not depend
on C*; therefore, both constants have values determined explicitly by the formulas. These
results have been shown to be fully consistent with the general form derived by Brown and
Korringa and the numerical predictions of these formulas have also been shown to be quite
reasonable.® The main conclusion of this analysis is that the presence of a small amount of

low modulus material can substantially decrease the effective solid moduli in Gassmann’s
equations.

Besides the usual restriction to porous media composed of a single granular material,

Biot’s (linear) equations of poroelasticity have several other limitations. The equations
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were derived with an explicit long-wavelength assumption and also with strong implicit
assumptions of homogeneity and isotropy on the macroscopic scale. Another restriction
assumes that the pore fluid is uniform and that it fully saturates the pore space. If the pore
fluid fills only part of the connected pore space or if the pores are filled with more than one
kind of fluid, then Biot’s equations are not adequate to describe all the possible modes of
oscillation of the system.” However, at long wavelengths (consistent with the derivation of
the equations), it is possible to treat systems with multiple pore fluids within the context of
Biot’s equations. Indeed, the authors have shown elsewhere!®!! how to construct another
effective medium approximation for partially saturated materials. Important results which
may be derived this way are the effective bulk modulus and density of a composite fluid

occupying the pores of a material well-described by Biot’s equations of poroelasticity thus
generalized for partial saturation.

If the total pore volume fraction ¢ is occupied by two fluids (say a liquid and a gas)
with bulk moduli K; and X, and volume fractions satisfying ¢; + ¢, = 4, then we have shown
that the effective fluid bulk modulus is given by

1/K;=S¢/K;+Sg/Kg‘ (11)
where the saturation levels are defined as
Si=¢1/8,Sq = ¢g/, (12)

which is the well-known result sometimes called Wood’s formula.!? The effective fluid bulk
modulus (11) is then the value to be used in Gassmann’s equation [use Egs.(1)-(3) with
K, = K4 = K. A similar calculation for the effective fluid density gives the simple result
that

P; = dip1 + bgpy, (13)
i.e., the effective density is just the average density.

To check the results of the theory against experiment, we have calculated the fast
compressional and shear wave speeds v, and v, using our theory of partial saturation.
Figures 1 and 2 show the results obtained when the formulas (11) and (13) are used to
estimate the fluid bulk modulus and density needed in the equations of poroelasticity. The
experimental data on Massilon sandstone are taken from Murphy.!*!* The parameters
used in the calculations were K = 1.02 GPa, y = 1.44 GPa, K, = 35.0 GPa, y, = 25.0 GPa,
ps =2.66 g/cc, K; = 2.25 GPa, p, = 0.997 g/cc, K, = 1.45 x 10~% GPa, p; =1.20% 1073 g/cc, ¢ =0.22,
x = 740 mD(permeability), & = 20 pm(hydraulic radius), and w = 27 x 560 Hz(frequency). The
values of K and u for the frame are chosen to fit the experimental results at S, = 0. The

remaining points of the theoretical curve (the solid lines) follow without further adjustment
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Figure 1. Fast compressional wave speed for a Massilon sandstone partially saturated
with water versus the fraction of the porosity filled with gas S,, i.e., the gas saturation. The
solid line is the theoretical result obtained by combining Biot’s theory of full saturation
with the effective medium result for the effective bulk modulus of a liquid/gas mixture -
Eqgs. (11) and (13) in the text. Values of the parameters used are quoted in the text. The
circles are the experimental data points of Murphy.13:1¢
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of parameters. The agreement between the theory and experiment is quite good for this
example.

These results had been found previously using ad hoc arguments concerning the ex-
pected low frequency behavior of the composite fluid occupying the pores.!314 The authors
have shown elsewhere that our methods can be used to estimate other parameters in the
problem such as the effective viscosity® of the composite fluid. So this approach certainly
has greater potential than a strictly phenomenological method to provide real insight into
all aspects of this very difficult problem. The theory has therefore essentially been vali-

dated for lower frequency wave propagation through fluid saturated and partially saturated
porous rocks.

Thus, we have found methods of estimating effective properties of complex porous
materials composed of multiple solid constituents and multiple pore fluids. Considerable
work remains of course to check these predictions against experiments and to generalize
the results for studies of the dynamic behavior of such materials.

PORE COLLAPSE AND SHEAR STRENGTH

To simplify the following discussion, we will neglect effects due to changes of phase in
the materials constituting the porous medium. Then, when pressure is applied to a dry
granular/porous material, the initial (pre-yield) loading curve is reversible (i.e., describ-
able by an energy functional) until some threshold value of the pressure (characteristic
of the loading path and the material) is reached. Above this threshold pressure, a gran-
ular material will begin to yield by suffering irreversible loss of pore space.’® When the
applied pressure is gradually released, the (post-yield) unloading curve is again reversible
(i.e., describable by a new energy functional) until reloading brings the magnitude of the
applied pressure again to its highest previous value (assuming the nature of the loading is
unchanged). When this new pressure threshold is reached, still more pore space may be
irreversibly crushed out of the material. (The presence of pore water has little mechani-
cal effect on this process unless the remaining connected pore space is filled with liquid;
then, the effective pressure must be used in the analysis instead of the applied pressure.)
Thus, even though a single energy functional cannot be used to analyze the behavior of the
granular/porous material on its yield surface, an array of such energy functionals parame-
terized by the current value of the porosity can be used virtually everywhere off the yield
surface. Furthermore, if these energy functionals change monotonically with the porosity,
then several things can be said about the flow rules governing the pore collapse.

To illustrate the preceding discussion, consider the problem of the expansion of a
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spherical shell of granular/porous material. It can be shown that, in this geometry, the

elastic stress energy functional may be written in terms of the principal stresses as
W = (rer + 2756)7 /18K() + (7rr — 700)* /61(#) (14)

where r,, and ryy = 74, are the radial and hoop stresses (positive in tension) respectively.
K(¢),u(#) are the bulk and shear moduli of the material which are assumed to be mono-
tonically increasing functions of the current value of the porosity 4. Following the analysis
of Hill'® for the elastic/plastic problem, we find that if the initial inner and outer radii of
the spherical shell are a, and b, then the stresses before yield are given by

=B -, (15)
o = pl35 - /1% - 2). (19

Hill’s discussion of the expanding spherical shell is for ductile metals; thus, he uses the
maximum shear theory of failure!” to provide his yield criterion

T90 — Trr = Y) (17)

which is either the Tresca or von Mises criterion since they are equivalent for the present
problem. Since rocks tend to be much more brittle than metals!® and since the initial
failure mechanism for this problem is expected to be a failure of the inner surface in
tension [since Eq.(16) is positive], Eq.(17) may not be the best choice of failure criterion.

However, we may still make some definite statements about the problem regardless of the
explicit failure criterion assumed.

Now, even though the changing state of the material during pore collapse is not de-
scribable by an energy functional, there are still several physical quantities about which
general quantitative statements can be made. For example, for slow deformations 7,746
satisfy equilibrium stress equations and the radial stress r,, must clearly be continuous
everywhere and at all times. Furthermore, we expect the elastic energy stored in the
material prior to the pore collapse to remain stored and therefore recoverable. If there
is some strain hardening during pore collapse, then the amount of recoverable energy in
the material will increase monotonically. If we consider an element of a thick spherical

shell (by >> ao) on the inner cavity surface (i.e., r = a0, then the elastic energy of such an
element prior to collapse is

Wo = (1, — "99)2/6#(95(‘) (18)

Thus, the stored energy upon subsequent unloading of the element is expected initially to
satisfy

Wo < W = (1., - To9)?/61(4), (19)
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being careful now to distinguish between the elastic stress component 7, and the residual
stress. For purposes of illustration, Fig. 3 plots the elastic energy W as a function of
cavity pressure p for some porous material at various values of porosity ¢. The solid lines
correspond to ¢ = 0.30,0.25,0.20,...,0.0. The dot-dash line corresponds to the failure surface.
We see that, as the porosity decreases, the (confined) shear modulus increases so the elastic
energy at a fixed value of p decreases. Initial loading takes us up one of the solid curves
during elastic deformation, then up the dot-dash line (for a strain hardening material)
during pore collapse, until unloading brings us back to the origin along another solid curve
corresponding to the compacted material of lower porosity.

As a consequence of (19), we find that one criterion for the yield point upon reloading
of the material is

(Ter — 108)% > Bu(@)Wo, (20)

which may be compared to (17). This result is very general — depending only on an
assumption of conservation of elastic energy, not on any specific mechanism for the initial
failure. Furthermore, it may provide some insight into the observed!®2° correlation between
rock strength and shear modulus. The result is also closely related to the observation in
ductile materials that the strain energy of distortion may be used as a criterion of yielding
and failure instead of the maximum shear.!” Finally, these ideas may also be used to analyze
the residual stress problem, but we will leave that discussion to a future publication.

CONCLUSIONS

Starting from a Lagrangian variational principle for porous media with density depen-
dent microstructure very closely related to the Eulerian variational principle of Drumbheller
and Bedford,* the authors have shown how to obtain equations of motion for various
physically important problems in the rheology and wave propagation behavior of rocks,
including: (1) Biot’s semilinear theory® of rheology, (2) Biot’s linear theory® of wave prop-
agation in fluid-saturated porous media, (3) general linear equations for wave propagation
in partially saturated porous media’. We have shown how to estimate the coefficients in
these equations from the known physical properties of the material constituents, for both
partially and fully saturated porous rocks'®!! and for rocks with a multiplicity of solid
components.® Furthermore, we have shown that closely related energy methods can pro-
vide some powerful clues to the behavior of granular media during large strain, inelastic
deformation leading to the nonrecoverable crush out of pore space. Future work will con-
centrate on extending the theoretical methods to still more realistic models and to more

comprehensive studies which validate the resulting predictions against laboratory data.
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Figure 3. Plots of elastic energy W as a function of applied pressure p for a porous ma-
terial at various values of porosity ¢. The solid lines correspond to ¢ = 0.30,0.25,0.20,...,0.0.
The dot-dash line corresponds to the failure surface.
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